

## Precision Rated Optics

Work with a PRO!

# **WS-G5484**



The WS-G5484 is programmed to be fully compatible and functional with all intended Cisco switching devices. This GBIC optical transceiver is based on the Gigabit Ethernet IEEE 802.3 standard. This module is designed for multimode fiber and operates at a nominal wavelength

#### Compliance:

- IEEE 802.3z Gigabit Ethernet
- Gigabit Interface Converter Specification
- RoHS
- Class 1 laser product EN 60825 Applications
- 1.25GBd Gigabit Ethernet

#### Features:

- Up to 1.25GBd bi-directional data links
- Hot-pluggable SFP footprint
- 850nm VCSEL laser transmitter
- Duplex SC connectors
- SCA-2 Host connector
- Up to 300M over 62.5/125 MMF
- Up to 550M over 50/125 MMF
- Single power supply 3.3V / 5V
- Operating temperature range C-Temp: 0° to 70

#### **SPECIFICATIONS**

| Parameter           | Symbol           | Min  | Тур  | Max   | Unit | Remarks                  |
|---------------------|------------------|------|------|-------|------|--------------------------|
| Data Rate           | DR               |      | 1.25 |       | GBd  | IEEE 802.3               |
| Bit Error Rate      | BER              |      |      | 10-12 |      |                          |
| Input Voltage       | V <sub>cc</sub>  | 3.15 |      | 5.5   | V    |                          |
| Maximum Voltage     | V <sub>MAX</sub> | -0.3 |      | 6     | V    | Electric Power Interface |
| Supply Current      | I <sub>s</sub>   |      | 190  | 300   | mA   | Electric Power Interface |
| Storage Temperature | T <sub>STO</sub> | -40  |      | 85    | °c   | Ambient Temperature      |



## Precision Rated Optics

Work with a PRO!

### **Optical Characteristics - Transmitter**

| Parameter                       | Symbol             | Min  | Тур | Max  | Unit  | Remarks         |
|---------------------------------|--------------------|------|-----|------|-------|-----------------|
| Optical Center Wavelength       | λ                  | 830  | 850 | 860  | nm    |                 |
| Output Optical Power            | P <sub>TX</sub>    | -9.5 |     | -3.5 | dBm   | Class 1 Product |
| Extinction Ratio @ 1.25GBd      | ER                 | 9    |     |      | dB    |                 |
| Spectral Width (RMS)            | Δλ                 |      | 0.5 | 0.85 | nm    |                 |
| Relative Intensity Noise        | RIN                |      |     | -120 | dB/Hz |                 |
| Optical Rise/Fall Time          | T <sub>RF_IN</sub> |      |     | 210  | ps    |                 |
| Deterministic Jitter Contribute | DJ                 |      |     | 80   | ps    |                 |
| Total Jitter (peak to peak)     | TJ <sub>TX</sub>   |      |     | 180  | ps    |                 |

#### **Optical Characteristics - Receiver**

| Parameter                         | Symbol               | Min | Тур | Max | Unit | Remarks    |
|-----------------------------------|----------------------|-----|-----|-----|------|------------|
| Optical Center Wavelength         | °C                   | 770 |     | 860 | Nm   |            |
| Optical Receive Power             | P <sub>RX</sub>      |     |     | 0   | dBm  | Average    |
| Receiver Sensitivity @<br>1.25GBd | R <sub>X_SENS1</sub> |     |     | -20 | dBm  | IEEE 802.3 |
| Optical Return Loss               | ORL                  | 12  |     |     | dB   |            |
| Max Reflectivity                  |                      |     |     | -14 | dB   |            |
| Total Jitter (peak to peak)       | TJ <sub>RX</sub>     |     |     | 180 | ps   | Filtered   |
| LOS Assert                        | LOS <sub>A</sub>     | -30 |     |     | dBm  |            |
| LOS De-Assert                     | LOS <sub>D</sub>     |     |     | -20 | dBm  |            |
| LOS Hysteresis                    |                      | 0.5 |     |     | dB   |            |


### **Electrical Characteristics - Low Speed Signals**

| Parameter              | Symbol          | Min                          | Тур | Max                          | Unit | Remarks                                      |
|------------------------|-----------------|------------------------------|-----|------------------------------|------|----------------------------------------------|
| <b>GBIC Output Low</b> | V <sub>ol</sub> | 0                            |     | 0.5                          | V    | 4.7k to 10k ohm pull-up                      |
| GBIC Output High       | V <sub>OH</sub> | V <sub>CC_HOST</sub><br>-0.5 |     | V <sub>CC_HOST</sub><br>+0.3 | V    | to host_Vcc. Measured at host side connector |
| <b>GBIC Output Low</b> | V <sub>IL</sub> | 0                            |     | 0.5                          | V    | 4.7k to 10k ohm pull-up                      |
| GBIC Output High       | V <sub>IH</sub> | V <sub>CC_HOST</sub><br>-0.5 |     | V <sub>CC_HOST</sub><br>+0.3 | V    | to host_Vcc. Measured at host side connector |

### **Electrical Characteristics - High Speed Signals**

| Parameter                             | Symbol           | Min | Тур | Max  | Unit | Remarks           |
|---------------------------------------|------------------|-----|-----|------|------|-------------------|
| Data Input Voltage<br>(peak to peak)  | V <sub>IN</sub>  | 650 |     | 2000 | mV   | PECL Differential |
| Data Output Voltage<br>(peak to peak) | V <sub>OUT</sub> | 370 |     | 2000 | mV   | PECL Differential |
| PECL rise/ fall time                  | $T_R/T_F$        |     |     | 260  | ps   |                   |
| Tx Input Impedance                    | Z <sub>IN</sub>  |     | 75  |      | ohm  |                   |
| Rx Output Impedance                   | Z <sub>out</sub> |     | 75  |      | ohm  |                   |

### **Block Diagram of Transceiver**



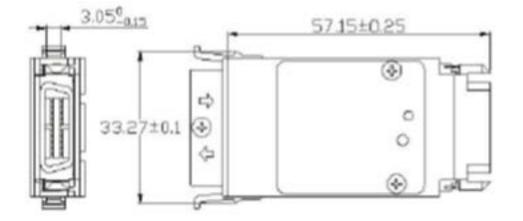
#### Transmitter Section

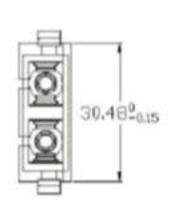
The VCSEL driver accept differential input data and provide bias and modulation currents for driving a laser. An automatic powercontrol (APC) feedback loop is incorporated to maintain a constant average optical power. 850nm VCSEL in an eye safe optical subassembly (OSA) mates to the fiber cable.

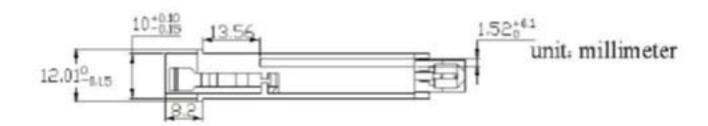
TX\_DISABLE- The TX\_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on within 1ms when TX\_ DISABLE is low (TTL logic "0").

TX\_FAULT- When the TX\_FAULT signal is high, output indicates a laser fault of some kind. Low indicates normal operation.

Receiver Section- The receiver utilizes a PIN detector integrated with a trans-impedance preamplifier in an OSA. This OSA is connected to a Limiting Amplifier which providing post-amplification quantization, and optical signal detection. The limiting Amplifier is AC-coupled to the transimpedance amplifier, with internal  $100\Omega$  differential termination.


Receive Loss (RX\_LOS)- The RX\_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.


Controller Section- The micro controller unit monitors the operation information of LD driver and Limiting Amplifier and report these status to the customer.

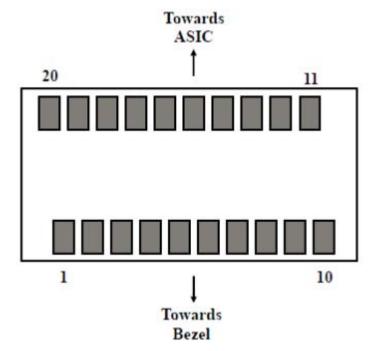


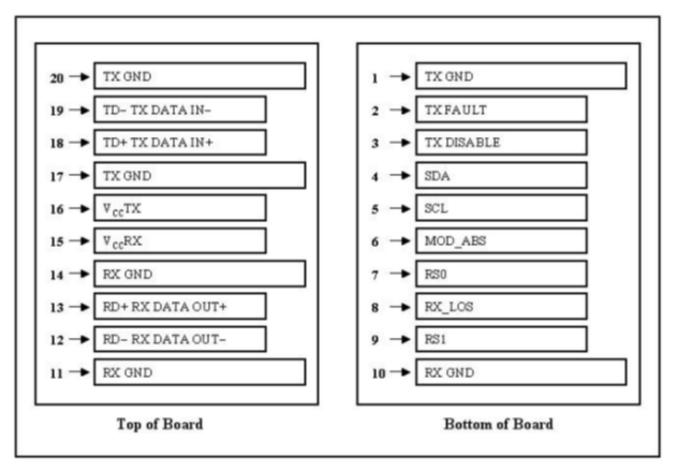

## **Dimensions**










# Precision Rated Optics

Work with a PRO!

### **Electrical Pad Layout**





#### 9Pin Assignment

| PIN# | Symbol      | Description                                  | Remarks                     |  |
|------|-------------|----------------------------------------------|-----------------------------|--|
| 1    | RX_LOS      | Receiver Loss of Signal                      |                             |  |
| 2    | RGND        | Receiver Ground                              | Ground to GBIC              |  |
| 3    | RGND        | Receiver Ground                              | Ground to GBIC              |  |
| 4    | MOD_DEF (0) | TTL Low                                      | Ground to GBIC              |  |
| 5    | MOD_DEF (1) | SCL Serial Clock Signal                      | Low Speed, From GBIC        |  |
| 6    | MOD_DEF (2) | SDA Serial Data Signal                       | Low Speed, From GBIC        |  |
| 7    | TX_DISABLE  | Transmit Disable                             | Low Speed, To GBIC          |  |
| 8    | TGND        | Transmit Ground                              | Ground to GBIC              |  |
| 9    | TGND        | Transmit Ground                              | Ground to GBIC              |  |
| 10   | TX_FAULT    | Transmitter Fault                            | Ground to GBIC              |  |
| 11   | RGND        | Receiver Ground                              | Ground to GBIC              |  |
| 12   | RD-         | Receiver Inverted DATA out. AC coupled       | High Speed Serial From GBIC |  |
| 13   | RD+         | Receiver Non-inverted DATA out. AC coupled   | High Speed Serial From GBIC |  |
| 14   | RGND        | Receiver Ground                              | Ground to GBIC              |  |
| 15   | VCCR        | Receiver power supply                        |                             |  |
| 16   | VCCT        | Transmitter power supply                     |                             |  |
| 17   | TGND        | Transmitter Ground                           | Ground to GBIC              |  |
| 18   | TD+         | Transmitter Non-inverted DATA in. AC coupled | High Speed Serial From GBIC |  |
| 19   | TD-         | Transmitter Inverted DATA in. AC coupled     | High Speed Serial From GBIC |  |
| 20   | TGND        | Transmitter ground                           | Ground to GBIC              |  |

#### References

- 1. IEEE standard 802.3. IEEE Standard Department, 2002.
- 2. Gigabit Interface Converter (GBIC) Revision 5.5.
- 3. Atmel Corporation- AT24C01A/02/04/08/16 2-Wire Serial CMOS EEPROM.